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ABSTRACT: In the present work we discuss cosmic strings in natural inflation. Our analysis
is based entirely on the CMB quadrupole temperature anisotropy and on the existing upper
bound on the cosmic string tension. Our results show that the allowed range for both
parameters of the inflationary model is very different from the range obtained recently
if cosmic strings are formed at the same time with inflation, while if strings are formed
after inflation we find that the parameters of the inflationary model are similar to the ones
obtained recently.
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1. Introduction

Inflation [I] solves some outstanding problems of standard Hot Big-Bang cosmology (flat-
ness, horizon, monopole problems) and at the same time it is a theory of the primordial
cosmological fluctuations responsible for the large scale structure we observe today. Simple
single-field inflationary models make some robust predictions, namely that the universe is
flat and that quantum fluctuations of the inflaton field during the inflationary era gener-
ate adiabatic, gaussian density fluctuations with a nearly scale-invariant power spectrum.
Today these predictions can be tested by the accumulated observational data from Super-
novae [}, BOOMERanG and MAXIMA [f], galaxy surveys [l and WMAP [fj] which have
strengthened the inflationary idea. However, there is not a theory for inflation yet. Fun-
damental scalars have not been observed and the self-interaction potential for the inflaton
field cannot emerge naturally from a fundamental theory in a unique way. Moreover, a
general class of models involving a single slowly-rolling field requires a specially designed
flat potential. This is the so-called fine-tuning problem in inflation. The model of natural
inflation [ was born sixteen years ago in order to address this problem. In this model
for inflation, which can be realized in certain particle physics models [fj], the inflaton po-
tential is flat due to shift symmetries. Recently the model of natural inflation has been
reexamined [f, fI] in the light of recent data. The potential for the inflaton field is deter-
mined by two mass scales, f and A. It has been shown that successful inflation as well
data from Wilkinson Microwave Anisotropy Probe (WMAP) [ require f > 0.7my,, where
mp = 1.22 x 10! GeV is the Planck mass, and A ~ 10'° GeV.

The particle physics Standard Model (SM) (for a review see e.g. [[(]) has been tested
to a very high precision. However, small but non-vanishing neutrino masses [[L], [[J] is per-
haps the most direct evidence that one should go beyond the SM. A very well-motivated
theoretical framework for physics beyond the SM is the Supersymmetric Grand Unified
Theory (SUSY-GUT). Supersymmetry (for a review on supersymmetry and supergravity



see e.g. [IL3]) elegantly solves the hierarchy problem of particle physics, provides a popular
candidate for Cold Dark Matter, makes the Higgs mechanism more natural compared to
the SM, and the gauge coupling constants of strong, weak and electromagnetic interactions
meet at a single point Mgyt = 2 x 101 GeV. GUTs [[[4] imply a sequence of sponta-
neous symmetry breaking (SSB) of the GUT gauge group Ggur down to the SM gauge
group Ggm = SU(3) x SU(2) x U(1). The energy scale at which this sequence starts is
Mgut = 2 x 10' GeV. Usually GUT models predict the appearance of stable topological
defects [@], monopoles, strings, domain walls and textures. Topological defects are pro-
duced in cosmological phase transitions by the Kibble mechanism [I§]. Among the various
defects, textures do not have important cosmological consequences, while monopoles and
domain walls are undesirable since they lead to catastrophic cosmological implications. A
common mechanism to get rid of the unwanted topological defects is to introduce cosmo-
logical inflation. On the other hand, cosmic strings could contribute to the anisotropies
of cosmic microwave background (CMB). In fact, topological defects were first introduced
in cosmology as a mechanism to produce the primordial perturbations needed in the early
universe to form the large-scale structure we observe today. However now we know that
topological defects alone cannot fit the CMB angular power spectrum [[7].

Natural inflation does not require the formation of cosmic strings. Despite this, we shall
assume that cosmic strings may be formed independently during a phase transition that
is not related to the particular inflationary model. Then both inflation and cosmic strings
contribute to the CMB quadrupole temperature anisotropy. We use the observational value
for the quadrupole as well as known bounds on the cosmic string tension. We will show
that the allowed range for the parameters of natural inflation is quite different than that
obtained in a recent work if cosmic strings are formed at the same time with inflation. If
however cosmic strings are formed after inflation, then the parameters of the model are
similar to the ones obtained recently.

Our work is organized as follows: In the next section we present the theoretical frame-
work. In the third section we discuss cosmic strings in natural inflation and finally we

conclude in the final section.

2. Theoretical framework

2.1 Natural inflation

Here we review the natural inflation model [, §, . We assume that a global symmetry is
spontaneously broken at some scale f, with a soft explicit symmetry breaking at a lower
scale A. According to Goldstone’s theorem, the spontaneous symmetry breaking of a global
symmetry leads to a Goldstone boson. If the global symmetry is an exact one, then the
Goldstone scalar is exactly massless. However, if the symmetry is explicitly broken, then
the scalar acquires a mass. The two scales f and A completely define the model. The
resulting potential for the Pseudo-Nambu-Goldstone Boson (PNGB), which we choose to
be our candidate for inflation, has the generic form

V(¢) = A* (1 £ cos(Ng/f)) (2.1)



and the mass of the PNGB is given by

A2
mey = —
T
A very well-known example of a PNGB is the QCD axion [[1§], which solves the strong C'P
problem by the Peccei-Quinn (PQ) mechanism [[I9]. In the axion case, A is the QCD scale,
A ~ 200MeV, while f is the scale at which the PQ symmetry U(1)pq is spontaneously
broken, typically f ~ 10! GeV.
Using the WMAP data [f] for the amplitude A and the spectral index ng for density
perturbations we can determine the height (~ A) and the width (~ f) of the potential.

(2.2)

The bound for the spectral index ng leads to a bound for the scale f
f>0.Tmy (2.3)
while the COBE normalization for the amplitude A, determines the scale A
A ~ 101 GeV (2.4)

With f ~mp and A ~ 10" GeV we obtain for the inflaton mass Mg ~ 10 GeV.

One more thing that one should take care of is a satisfactory reheating after inflation.
At the end of the slow-roll regime the inflaton field begins to oscillate about the minimum
of the potential leading to entropy and particle production. If the decay rate of the inflaton
is 'y, then the reheating temperature after inflation Tx is given by

m:@ﬁﬁw¢@@ 25)
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where g.g is the effective number of degrees of freedom for relativistic particles at the
reheating temperature. If the reheating temperature is Tr > 1TeV then all particles are
relativistic and for the standard model g.g = 106.75, while for the MSSM g.g = 228.75.
The inflaton decay rate on dimensional grounds is given by
3
m AS
_ 29 _ 2
I'g=yg F =g F
where ¢ is some effective coupling constant with values ¢ < 1. Any viable model for
inflation must satisfy the gravitino constraint 20, R1] Tr < (10° —107) GeV. With f ~ my,
and A ~ 10'® GeV, one can easily see that the gravitino constraint is satisfied for g < 1.

(2.6)

2.2 The CMB temperature anisotropies

The temperature anisotropies [2J] are usually quoted in terms of coefficients C; of two-point
correlations. The anisotropy can be expanded in spherical harmonics, which is a natural
basis because the last scattering surface, from which the photons of the CMB reach us
today on earth, is a sphere. So we can write

O) = (1) = 3 an ¥ () (2.7)
Im



where the unit vector 7 is the direction of observation in the sky, and we omit the indices
no for today and xg for “here”. The two-point correlation between two directions in the
sky is given by

C(0) = (B(71)O(7)) = > (armaf ) Y™ () (V5" (7)) (2.8)

/ /
Ll m,m

where 0 is the angle between the directions 77 - 7io = cosfl. The coefficients C; are defined
by
(ar,mar m') = 01O Ci (2.9)

Using this definition and the addition theorem for spherical harmonics we obtain

C(6) = % S (21 + 1)CiPy(cost) (2.10)
1

where Pj(x) are the Legendre’s polynomials of degree [. The rms value for the temperature
anisotropies is defined 23]

2
(%) =C0=0)= iﬂ Y @+1GA(1) = LS @y (2.11)
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where we have neglected the first two terms corresponding to I = 0 (monopole term)
and [ = 1 (dipole term). The monopole term is unobservable, while the dipole term has
to do with the relative motion of the observer with respect to the CMB frame and has
been removed for the determination of the rms value of the anisotropy. The dominant
contribution to the sum above comes from the first term for [ = 2, which is the quadrupole

anisotropy [R3]
sT\?> 5
— = — 2.12
(T>Q payes (2.12)

and for which the observational value is [{]

T
(5—> = 6.6 x 107° (2.13)
T'/q

3. Natural inflation meets cosmic strings

For the inflaton potential we choose to work with N = 1 and the minus sign. In the
slow-roll approximation the slope and the curvature of the potential must satisfy the two
constraints € < 1 and |n| < 1, where € and 7 are the two slow-roll parameters which are
defined by

Vl/
_ 2
=3 (3.2)
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Figure 1: Inflation contribution to the quadrupole anisotropy as a function of A (in GeV) for
f=8.6x10'8 GeV.

The end of inflation is determined by the condition maz(e, |n|) = 1. In this approximation

the equation of motion for the scalar field takes the form

. Vv’
~_ 3.3
¢ 3H (3:3)
while the Friedmann equation becomes (V' > ¢2)

H? = ? V() (3.4)

where G is Newton’s constant. The number of e-folds during inflation is given by

tend
N, = logZend — / H(t)dt (3.5)
t*

A

For a strong enough inflation so that the horizon problem is solved we take N, = 60.
Assuming that in the total quadrupole anisotropy contribute both inflation (infl) and
cosmic strings (cs), then the anisotropy will be given by

6T\ 2 6T\ 2 5T\ 2
(7),= (), .+ (7) (36)
Q Q—infl Q—cs

The contribution from inflation has a scalar part and a tensor part. The scalar part is

given by [24]
oT L V()
( > Q—scal (37)

T 415 MEV(5.)

where M, = 2.43 x 10'® GeV is the reduced Planck mass, V(@) is the potential for the
inflaton field, V' is the derivative dV/d¢ of the potential with respect to ¢ and ¢, is



the value of the inflaton field when the comoving scale corresponding to the quadrupole
anisotropy became larger than the Hubble radius. The tensor part is given by [4]

6T . 129,
T O—tens 8 Mp

Therefore the total quadrupole anisotropy is given by

5T>2 <5T>2 <5T>2 <5T>2
< T T Q—scal T Q—tens T Q—cs

where (‘%T) O scal and (‘%T) O—tens A€ given above and the contribution from cosmic strings
is given by

<57T>Q_CS = (9 —10)Gu (3.10)

where p = 2702 and v is the vacuum expectation value (vev) of the Higgs field responsible
for the formation of cosmic strings.

The effects of cosmic strings depend on the value of the dimensionless quantity Gp,
where p is the tension of the string (mass per unit length) and sets the scale of SSB at
which cosmic strings are formed. Current observations constrain the string tension to be
Gu < 2x 1077 [PF]. A stronger bound comes from pulsars, Gu < 10~7 [Rf], and an even
stronger bound comes from reionization, Gu < 3 x 1078 [R7]. The bound on the string
tension puts an upper bound on the Higgs vev

v <22 x 10 GeV (3.11)
for the weakest bound on u, and
v < 84 x 101 GeV (3.12)

for the strongest bound on p.

Below we shall assume that inflation takes place after monopole formation, so that
the unwanted monopoles are diluted away, and that cosmic strings are formed either after
inflation or at the same time with inflation. If cosmic strings are formed prior to inflation
they will be diluted away as well and they will not have any observational effect on the
subsequent evolution of the universe.

First we focus on the case in which cosmic strings are formed at the same time with
inflation. In this case the Higgs vev v for the SSB that generates the cosmic strings and
the inflation scale M7 are of order A, M; ~ v ~ A, which should satisfy the upper bound
written above. We use the expression for the quadrupole temperature anisotropy, which is
essentially a function of the parameters of the model f and A, and require that it should
satisfy the observational value, namely

<%T>Q (f,A) =6.6 x 107° (3.13)
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Figure 2: Same as figure 1 but for f = 9.5 x 10'® GeV.
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Figure 3: Same as figure 1 but for f = 1.2 x 10*° GeV.

The equation above relates f and A in a certain fashion. Defining the dimensionless

quantities
__f
f18 - 1018 GeV (314)
A

the graph Aq5 versus fig can be shown in the figure 4 below. We see that it is a continuous
increasing function which saturates as A ~ 4 x 10" GeV. In fact the curve that we have
obtained is similar to the one obtained in [R4]. If then we impose the weak upper bound
A < 2.2 x 10" GeV, we obtain for f, f < 5.8 x 10'® GeV, while if we impose the strong
bound A < 8.4 x 104 GeV we obtain f < 4.9 x 10'® GeV. Therefore, using the strongest
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Figure 4: Shown is A5 versus fig. The quantities A15 and fig are defined in the text.

bound for the string tension we obtain the results

A < 8.4 x 10" GeV (3.16)
f<4.9x10'" GeV (3.17)

This is the first of our main results in this article. It is obvious that the allowed range
for both parameters of the inflationary model is very different from the range obtained
recently.

Now we go on to the case in which cosmic strings are formed after inflation and we
impose the strongest bound to the Higgs vev, v < 8.4 x 104 GeV. This bound sets a
condition for the inflation contribution to the quadrupole

5T\
<—> >43x1071! (3.18)
T Q—infl

Since inflation takes place after monopole formation and prior to cosmic string formation
the condition v < A ~ M7 < Mgut should be satisfied. For a given f we can compute the
total (scalar plus tensor) inflation contribution to the quadrupole as a function of A. This

can be seen in figure 1, 2 and 3 below (they are of parabolic form, that is the anisotropy
in y axis ~ A?) for several different values of f. We obtain a lower bound on A as follows

o For f =86 x10"® GeV, A>7.6x10 GeV
e For f=9.5x10"% GeV, A>09.1x10" GeV
o For f=12x10"Y GeV, A>12x10'6 GeV

This is the second main result in the present work. We see that the lower bound on A
increases with f. So in order to have a scale A between v and Mgyt the scale f has to



be close to Planck mass. Furthermore, there is a narrow allowed range for A of the order
of A ~ 10 GeV. These values for the inflationary parameters f, A, are similar to the ones
obtained recently.

4. Conclusions

In the present work we have discussed cosmic strings in natural inflation. Cosmic strings are
topological defects that generally appear in SSB schemes of GUT models. Measurements
of the CMB temperature anisotropies constrain the contribution of the cosmic strings to
the angular power spectrum of the anisotropies, and in general there are several works that
impose an upper bound (weaker or stronger) on the cosmic string tension. On the other
hand, natural inflation was invented in order to address the so-called fine-tuning problem
in inflation. The model is completely characterized by two mass scales, f and A. The
scale f is the scale at which a global symmetry is spontaneously broken and determines
the width of the potential for the resulting PNGB, while the lower scale A is related to
a soft explicit symmetry breaking and determines the height of the potential. The recent
data from WMAP determine the parameters of the model. According to a recent work one
obtains f ~ mp = 1.22 X 10" GeV and A ~ 10'® GeV. The present work is based entirely
on the CMB quadrupole temperature anisotropy and on the existing upper bounds on the
cosmic string tension p. Our work shows that if cosmic strings are formed at the same
time with inflation, the observed value for the quadrupole anisotropy relates the scales f
and A in a certain fashion. Then the upper bound on p induces an upper bound on both
A and f. In particular, our analysis show that f < 5.8 x 10'® GeV for the weakest bound
and f < 4.9 x 10'8 GeV for the strongest bound. We conclude that our results are different
compared to that obtained in previous works. However, if cosmic strings are formed after
inflation, we find that for f ~ my there is a narrow allowed range for A of the order
A ~ 10'5 GeV, which is of the same order of magnitude obtained recently.
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